class Base(nn.Module, VllmModel, SupportsQuant, SupportsLoRA, SupportsPP):
embedding_padding_modules = ["lm_head"]
embedding_modules = ["embed_tokens"] # TODO transformers will have a util to get it
def __init__(self, *, vllm_config: "VllmConfig", prefix: str = ""):
super().__init__()
logger.info("Using Transformers backend.")
self.config = vllm_config.model_config.hf_config
self.text_config = self.config.get_text_config()
self.cache_config = vllm_config.cache_config
self.device_config = vllm_config.device_config
self.model_config = vllm_config.model_config
self.parallel_config = vllm_config.parallel_config
self.quant_config = vllm_config.quant_config
self.pp_group = get_pp_group()
self.tp_group = get_tp_group()
# Weights to skip in `self.load_weights`
self.skip_prefixes: list[str] = []
"""Skip loading weights whose qualname starts with these prefixes."""
self.skip_substrs: list[str] = []
"""Skip loading weights whose qualname contains these substrings."""
self.ignore_unexpected_prefixes: list[str] = []
"""Ignore unexpected weights whose qualname starts with these prefixes.
"""
self.ignore_unexpected_suffixes: list[str] = []
"""Ignore unexpected weights whose qualname ends with these suffixes."""
if self.quant_config:
quant_method_name = self.quant_config.get_name()
# Check for unsupported quantization methods.
if quant_method_name == "mxfp4":
raise NotImplementedError(
"Transformers backend does not support MXFP4 quantization yet."
)
# Skip loading extra bias for GPTQ models.
if "gptq" in quant_method_name:
self.ignore_unexpected_suffixes.append(".bias")
# Set correct attn and init on "meta" to delay allocating GPU tensors
self.text_config._attn_implementation = "vllm"
with init_on_device_without_buffers("meta"):
self.model: PreTrainedModel = AutoModel.from_config(
self.config,
dtype=self.model_config.dtype,
trust_remote_code=self.model_config.trust_remote_code,
)
# Remove layers not on this pipeline parallel rank
self.pipeline_parallel()
# Substitute remaining layers with vLLM's layers as needed
self.recursive_replace()
# Create attention instances for KV cache allocation
self.attention_instances = self.create_attention_instances()
# Input embeddings
input_embeddings = self.model.get_input_embeddings()
if not isinstance(input_embeddings, PPMissingLayer):
# Some models scale embeddings inside the input embedding layer
self.embed_scale = getattr(input_embeddings, "embed_scale", None)
names = ("embedding_size", "hidden_size")
embedding_dim = getattr_iter(self.text_config, names, None)
assert embedding_dim is not None
self.model.set_input_embeddings(
VocabParallelEmbedding(
self.text_config.vocab_size,
embedding_dim=embedding_dim,
org_num_embeddings=self.text_config.vocab_size,
quant_config=self.quant_config,
)
)
# Initialize any parameters that have not had their modules replaced
self.init_parameters(self.model)
# Pipeline parallel intermediate tensors
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states"], self.text_config.hidden_size
)
def pipeline_parallel(self):
"""
Apply the model's pipeline parallelization plan.
"""
if self.pp_group.world_size <= 1:
return
if not self.model.supports_pp_plan:
tip = get_feature_request_tip(
self.model_config.model, self.model_config.trust_remote_code
)
raise ValueError(
f"{type(self.model)} does not support pipeline parallel. {tip}"
)
module_lists = []
module_list_idx = None
pp_plan = list(self.model._pp_plan.keys())
for i, name in enumerate(pp_plan):
if isinstance(getattr(self.model, name), nn.ModuleList):
module_lists.append(name)
module_list_idx = i
if len(module_lists) > 1:
raise ValueError(
"Pipeline parallel of models with multiple `ModuleList`s "
"in the base model are not supported yet!"
)
if module_list_idx is None:
raise ValueError(f"Could not find `ModuleList` in {type(self.model)}")
# Layers before module list
for name in pp_plan[:module_list_idx]:
if self.pp_group.is_first_rank or (
self.text_config.tie_word_embeddings and self.pp_group.is_last_rank
):
continue
setattr(self.model, name, PPMissingLayer())
# Module list
start_layer, end_layer = get_pp_indices(
self.text_config.num_hidden_layers,
self.pp_group.rank_in_group,
self.pp_group.world_size,
)
layers_name = pp_plan[module_list_idx]
layers = getattr(self.model, layers_name)
for i in range(len(layers)):
if start_layer <= i and i < end_layer:
continue
layers[i] = PPMissingLayer()
# Layers after module list
for name in pp_plan[module_list_idx + 1 :]:
# Modules that should be on last rank
if not self.pp_group.is_last_rank:
setattr(self.model, name, PPMissingLayer())
def recursive_replace(self):
"""Recursively replace modules in the model as needed.
Currently, this replaces:
- `nn.Linear` with vLLM's tensor parallel linear classes
- `*RMSNorm` with vLLM's `RMSNorm`
"""
tp_plan = self.model.tp_plan
if not tp_plan and self.tp_group.world_size > 1:
tip = get_feature_request_tip(
self.model_config.model, self.model_config.trust_remote_code
)
raise ValueError(
f"{type(self.model)} does not support tensor parallel. {tip}"
)
# Prefix the patterns because we always start from `self.model`
tp_plan = {maybe_prefix("model", k): v for k, v in tp_plan.items()}
def _recursive_replace(module: nn.Module, prefix: str):
for child_name, child_module in module.named_children():
new_module = child_module
qual_name = maybe_prefix(prefix, child_name)
if isinstance(child_module, nn.Linear):
generator = (p for p in tp_plan if re.match(p, qual_name))
pattern = next(generator, None)
# Some weight loaders expect all linear layers to inherit
# LinearBase, so we set a default style which causes any
# unspecified layers to be replaced with ReplicatedLinear
style = tp_plan.get(pattern, "replicate")
new_module = replace_linear_class(
child_module, style, self.quant_config, prefix=qual_name
)
elif child_module.__class__.__name__.endswith("RMSNorm"):
new_module = replace_rms_norm_class(
child_module, self.text_config.hidden_size
)
else:
_recursive_replace(child_module, prefix=qual_name)
if new_module is not child_module:
setattr(module, child_name, new_module)
log_replacement(qual_name, child_module, new_module)
_recursive_replace(self.model, prefix="model")
def create_attention_instances(self) -> dict[int, Attention]:
"""
Create `Attention` instances to inform KV cache allocation.
"""
text_config = self.text_config
num_heads = self.model_config.get_num_attention_heads(self.parallel_config)
head_size = self.model_config.get_head_size()
num_kv_heads = self.model_config.get_num_kv_heads(self.parallel_config)
logits_soft_cap = getattr(text_config, "attn_logit_softcapping", None)
# In encoder models, the attention layers will have `is_causal=False`
is_encoder = lambda module: not getattr(module, "is_causal", True)
has_encoder = lambda model: any(is_encoder(m) for m in model.modules())
is_multimodal = lambda config: config != config.get_text_config()
# vLLM does not support encoder-decoder models, so if any encoder layer is
# found in a text only model, we assume the whole model is an encoder model
if has_encoder(self.model) and not is_multimodal(self.config):
self.check_version("4.57.0.dev0", "encoder models support")
attn_type = AttentionType.ENCODER_ONLY
else:
attn_type = AttentionType.DECODER
pp_rank = self.pp_group.rank_in_group
pp_size = self.pp_group.world_size
start, end = get_pp_indices(text_config.num_hidden_layers, pp_rank, pp_size)
attention_instances = {}
for i in range(start, end):
# Handle interleaved sliding window attention
per_layer_sliding_window = None
if (
hasattr(self.config, "layer_types")
and self.config.layer_types[i] == "sliding_attention"
):
per_layer_sliding_window = self.config.sliding_window
attention_instances[i] = Attention(
num_heads=num_heads,
head_size=head_size,
# NOTE: We use Llama scale as default, if it's set by
# Transformers, it's updated in vllm_flash_attention_forward
scale=head_size**-0.5,
num_kv_heads=num_kv_heads,
cache_config=self.cache_config,
quant_config=self.quant_config,
logits_soft_cap=logits_soft_cap,
per_layer_sliding_window=per_layer_sliding_window,
prefix=f"{i}.attn",
attn_type=attn_type,
)
return attention_instances
def init_parameters(self, module: nn.Module, dtype: torch.dtype | None = None):
"""
If a `parameter` is on the `meta` device, then its parent
`module` is the original module created by:
```python
with torch.device("meta"):
self.model: "PreTrainedModel" = AutoModel.from_config(...)
```
"""
def _init_parameters(module: nn.Module, dtype: torch.dtype | None):
for name, param in module.named_parameters(recurse=False):
if param.device == torch.device("meta"):
new_param = nn.Parameter(
torch.empty_like(
param.data,
dtype=dtype or self.model_config.dtype,
device=self.device_config.device,
)
)
setattr(module, name, new_param)
for child in module.children():
_init_parameters(child, dtype)
_init_parameters(module, dtype)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
inputs_embeds = self.model.get_input_embeddings()(input_ids)
if self.embed_scale is not None:
inputs_embeds *= self.embed_scale
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor | IntermediateTensors:
if not self.pp_group.is_first_rank:
assert intermediate_tensors is not None
input_ids = None
inputs_embeds = intermediate_tensors["hidden_states"]
if input_ids is not None:
input_ids = input_ids[None, ...]
if inputs_embeds is not None:
inputs_embeds = inputs_embeds[None, ...]
# If the model scales embeddings inside the input embedding layer we must
# ensure they are scaled here since VocabParallelEmbedding will not do it
if (
self.embed_scale is not None
and input_ids is not None
and inputs_embeds is None
):
inputs_embeds = self.get_input_embeddings(input_ids)
input_ids = None
if self.model_config.uses_mrope:
position_ids = positions[:, None]
else:
position_ids = positions[None, ...]
hidden_states = self.model(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
use_cache=False,
position_ids=position_ids,
attention_instances=self.attention_instances,
return_dict=False,
**kwargs,
)[0][0, ...] # we remove batch dimension for now
if not self.pp_group.is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
return hidden_states
def load_weights(
self,
weights: Iterable[tuple[str, torch.Tensor]],
) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=self.skip_prefixes,
skip_substrs=self.skip_substrs,
ignore_unexpected_prefixes=self.ignore_unexpected_prefixes,
ignore_unexpected_suffixes=self.ignore_unexpected_suffixes,
)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
@staticmethod
def check_version(min_version: str, feature: str):
installed = Version(transformers.__version__)
required = Version(min_version)
if installed < required:
raise ImportError(
f"Transformers backend requires transformers>={required} "
f"for {feature}, but got {installed}"
)