Transformers backend mixin for causal language models.
Bases: VllmModelForTextGeneration
Source code in vllm/model_executor/models/transformers/causal.py
| class CausalMixin(VllmModelForTextGeneration):
def __init__(self, *, vllm_config: "VllmConfig", prefix: str = ""):
# Skip VllmModelForTextGeneration.__init__ and call the next class in MRO
super(VllmModelForTextGeneration, self).__init__(
vllm_config=vllm_config, prefix=prefix
)
# Tell `Base.load_weights` to skip
# `lm_head` if the model has tied word embeddings
if self.text_config.tie_word_embeddings:
self.skip_prefixes.append("lm_head.")
if self.pp_group.is_last_rank:
self.unpadded_vocab_size = self.text_config.vocab_size
self.lm_head = ParallelLMHead(
self.text_config.vocab_size,
self.text_config.hidden_size,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if self.text_config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(
self.model.get_input_embeddings()
)
logit_scale = getattr(self.text_config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, self.text_config.vocab_size, logit_scale
)
else:
self.lm_head = PPMissingLayer()
def compute_logits(self, hidden_states: "torch.Tensor") -> "torch.Tensor | None":
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
|
logits_processor = LogitsProcessor(
unpadded_vocab_size, vocab_size, logit_scale
)
unpadded_vocab_size = vocab_size
Source code in vllm/model_executor/models/transformers/causal.py
| def __init__(self, *, vllm_config: "VllmConfig", prefix: str = ""):
# Skip VllmModelForTextGeneration.__init__ and call the next class in MRO
super(VllmModelForTextGeneration, self).__init__(
vllm_config=vllm_config, prefix=prefix
)
# Tell `Base.load_weights` to skip
# `lm_head` if the model has tied word embeddings
if self.text_config.tie_word_embeddings:
self.skip_prefixes.append("lm_head.")
if self.pp_group.is_last_rank:
self.unpadded_vocab_size = self.text_config.vocab_size
self.lm_head = ParallelLMHead(
self.text_config.vocab_size,
self.text_config.hidden_size,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if self.text_config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(
self.model.get_input_embeddings()
)
logit_scale = getattr(self.text_config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, self.text_config.vocab_size, logit_scale
)
else:
self.lm_head = PPMissingLayer()
|
Source code in vllm/model_executor/models/transformers/causal.py
| def compute_logits(self, hidden_states: "torch.Tensor") -> "torch.Tensor | None":
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
|