class RayDistributedExecutor(Executor):
"""Ray-based distributed executor"""
# These env vars are worker-specific, therefore are NOT copied
# from the driver to the workers
WORKER_SPECIFIC_ENV_VARS = {
"VLLM_HOST_IP",
"VLLM_HOST_PORT",
"LOCAL_RANK",
"CUDA_VISIBLE_DEVICES",
}
# These non-vLLM env vars are copied from the driver to workers
ADDITIONAL_ENV_VARS = {"HF_TOKEN", "HUGGING_FACE_HUB_TOKEN"}
uses_ray: bool = True
supports_pp: bool = True
def _init_executor(self) -> None:
self.forward_dag: ray.dag.CompiledDAG | None = None
# For TPU or XPU, avoid compiling NVIDIA's NCCL
if current_platform.is_tpu() or current_platform.is_xpu():
os.environ["VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE"] = "shm"
assert self.uses_ray
initialize_ray_cluster(self.parallel_config)
placement_group = self.parallel_config.placement_group
# Disable Ray usage stats collection.
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
if ray_usage != "1":
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
# Create the parallel GPU workers.
self._init_workers_ray(placement_group)
# KV connector setup
self.has_connector = self.vllm_config.kv_transfer_config is not None
@property
def max_concurrent_batches(self) -> int:
"""Ray distributed executor supports pipeline parallelism,
meaning that it allows PP size batches to be executed concurrently.
"""
if self.scheduler_config.async_scheduling:
return 2
return self.parallel_config.pipeline_parallel_size
def shutdown(self) -> None:
if logger:
# Somehow logger can be None here.
logger.info(
"Shutting down Ray distributed executor. If you see error log "
"from logging.cc regarding SIGTERM received, please ignore "
"because this is the expected termination process in Ray."
)
if hasattr(self, "forward_dag") and self.forward_dag is not None:
self.forward_dag.teardown()
import ray
for worker in self.workers:
ray.kill(worker)
self.forward_dag = None
def _configure_ray_workers_use_nsight(self, ray_remote_kwargs) -> dict[str, Any]:
# If nsight profiling is enabled, we need to set the profiling
# configuration for the ray workers as runtime env.
runtime_env = ray_remote_kwargs.setdefault("runtime_env", {})
runtime_env.update(
{
"nsight": {
"t": "cuda,cudnn,cublas",
"o": "'worker_process_%p'",
"cuda-graph-trace": "node",
}
}
)
return ray_remote_kwargs
# child class could overwrite this to return actual env vars.
def _get_env_vars_to_be_updated(self):
return self._env_vars_for_all_workers
def _init_workers_ray(self, placement_group: "PlacementGroup", **ray_remote_kwargs):
num_gpus = envs.VLLM_RAY_PER_WORKER_GPUS
# The driver dummy worker does not actually use any resources.
# It holds the resource for the driver worker.
self.driver_dummy_worker: RayWorkerWrapper | None = None
# The remaining workers are the actual ray actors.
self.workers: list[RayWorkerWrapper] = []
# Used in ray compiled DAG: indexed first by PP rank,
# and then TP rank. In other words, the inner list is
# the TP group of workers for a PP rank.
self.pp_tp_workers: list[list[RayWorkerWrapper]] = []
if self.parallel_config.ray_workers_use_nsight:
ray_remote_kwargs = self._configure_ray_workers_use_nsight(
ray_remote_kwargs
)
# Create the workers.
bundle_indices: list[int]
if envs.VLLM_RAY_BUNDLE_INDICES:
# Use the bundle indices specified by the user.
bundle_indices = list(map(int, envs.VLLM_RAY_BUNDLE_INDICES.split(",")))
assert len(bundle_indices) == self.parallel_config.world_size, (
"VLLM_RAY_BUNDLE_INDICES must have the same size"
f" as the world size, but got {bundle_indices=} "
f"and {self.parallel_config.world_size=}"
)
assert len(set(bundle_indices)) == len(bundle_indices), (
"VLLM_RAY_BUNDLE_INDICES cannot have duplicate values,"
f" but got {bundle_indices=}"
)
else:
# use the first N bundles that have GPU resources.
bundle_indices = []
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
if bundle.get(current_platform.ray_device_key, 0):
bundle_indices.append(bundle_id)
bundle_indices = bundle_indices[: self.parallel_config.world_size]
worker_metadata: list[RayWorkerMetaData] = []
driver_ip = get_ip()
for rank, bundle_id in enumerate(bundle_indices):
scheduling_strategy = PlacementGroupSchedulingStrategy(
placement_group=placement_group,
placement_group_capture_child_tasks=True,
placement_group_bundle_index=bundle_id,
)
if current_platform.ray_device_key == "GPU":
# NV+AMD GPUs, and Intel XPUs
worker = ray.remote(
num_cpus=0,
num_gpus=num_gpus,
scheduling_strategy=scheduling_strategy,
**ray_remote_kwargs,
)(RayWorkerWrapper).remote( # type: ignore[attr-defined]
vllm_config=self.vllm_config, rpc_rank=rank
)
else:
worker = ray.remote(
num_cpus=0,
num_gpus=0,
resources={current_platform.ray_device_key: num_gpus},
scheduling_strategy=scheduling_strategy,
**ray_remote_kwargs,
)(RayWorkerWrapper).remote( # type: ignore[attr-defined]
vllm_config=self.vllm_config, rpc_rank=rank
)
worker_metadata.append(RayWorkerMetaData(worker=worker, created_rank=rank))
worker_ips = ray.get(
[
each.worker.get_node_ip.remote() # type: ignore[attr-defined]
for each in worker_metadata
]
)
for each, ip in zip(worker_metadata, worker_ips):
each.ip = ip
logger.debug("workers: %s", worker_metadata)
logger.debug("driver_dummy_worker: %s", self.driver_dummy_worker)
ip_counts: dict[str, int] = {}
for ip in worker_ips:
ip_counts[ip] = ip_counts.get(ip, 0) + 1
def sort_by_driver_then_worker_ip(item: RayWorkerMetaData):
"""
Sort the workers based on 3 properties:
1. If the worker is on the same node as the driver (vllm engine),
it should be placed first.
2. Then, if the worker is on a node with fewer workers, it should
be placed first.
3. Finally, if the work is on a node with smaller IP address, it
should be placed first.
"""
ip = item.ip
return 0 if ip == driver_ip else 1, ip_counts[ip], ip
# After sorting, the workers on the same node will be
# close to each other, and the workers on the driver
# node will be placed first.
sorted_worker_metadata = sorted(
worker_metadata, key=sort_by_driver_then_worker_ip
)
for i, item in enumerate(sorted_worker_metadata):
item.adjusted_rank = i
self.workers = [item.worker for item in sorted_worker_metadata]
rerank_mapping = {
item.created_rank: item.adjusted_rank for item in sorted_worker_metadata
}
self.collective_rpc("adjust_rank", args=(rerank_mapping,))
# Get the set of GPU IDs used on each node.
worker_node_and_gpu_ids = []
for worker in [self.driver_dummy_worker] + self.workers:
if worker is None:
# driver_dummy_worker can be None when using ray spmd worker.
continue
worker_node_and_gpu_ids.append(
ray.get(worker.get_node_and_gpu_ids.remote())
) # type: ignore[attr-defined]
node_workers = defaultdict(list) # node id -> list of worker ranks
node_gpus = defaultdict(list) # node id -> list of gpu ids
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids):
node_workers[node_id].append(i)
# `gpu_ids` can be a list of strings or integers.
# convert them to integers for consistency.
# NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs),
# string sorting is not sufficient.
# see https://github.com/vllm-project/vllm/issues/5590
gpu_ids = [int(x) for x in gpu_ids]
node_gpus[node_id].extend(gpu_ids)
for node_id, gpu_ids in node_gpus.items():
node_gpus[node_id] = sorted(gpu_ids)
all_ips = set(worker_ips + [driver_ip])
n_ips = len(all_ips)
n_nodes = len(node_workers)
if n_nodes != n_ips:
raise RuntimeError(
f"Every node should have a unique IP address. Got {n_nodes}"
f" nodes with node ids {list(node_workers.keys())} and "
f"{n_ips} unique IP addresses {all_ips}. Please check your"
" network configuration. If you set `VLLM_HOST_IP`"
" environment variable, make sure it is unique for"
" each node."
)
# Set environment variables for the driver and workers.
all_args_to_update_environment_variables = [
{
current_platform.device_control_env_var: ",".join(
map(str, node_gpus[node_id])
),
}
for (node_id, _) in worker_node_and_gpu_ids
]
# Environment variables to copy from driver to workers
env_vars_to_copy = get_env_vars_to_copy(
exclude_vars=self.WORKER_SPECIFIC_ENV_VARS,
additional_vars=set(current_platform.additional_env_vars).union(
self.ADDITIONAL_ENV_VARS
),
destination="workers",
)
# Copy existing env vars to each worker's args
for args in all_args_to_update_environment_variables:
# TODO: refactor platform-specific env vars
for name in env_vars_to_copy:
if name in os.environ:
args[name] = os.environ[name]
self._env_vars_for_all_workers = all_args_to_update_environment_variables
self.collective_rpc(
"update_environment_variables", args=(self._get_env_vars_to_be_updated(),)
)
if len(node_gpus) == 1:
# in single node case, we don't need to get the IP address.
# the loopback address is sufficient
# NOTE: a node may have several IP addresses, one for each
# network interface. `get_ip()` might return any of them,
# while they might not work for communication inside the node
# if the network setup is complicated. Using the loopback address
# solves this issue, as it always works for communication inside
# the node.
driver_ip = "127.0.0.1"
distributed_init_method = get_distributed_init_method(
driver_ip, get_open_port()
)
# Initialize the actual workers inside worker wrapper.
all_kwargs = []
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids):
local_rank = node_workers[node_id].index(rank)
kwargs = dict(
vllm_config=self.vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
is_driver_worker=(not self.parallel_config)
or (rank % self.parallel_config.tensor_parallel_size == 0),
)
all_kwargs.append(kwargs)
self.collective_rpc("init_worker", args=(all_kwargs,))
self.collective_rpc("init_device")
self.collective_rpc("load_model")
for pp_rank in range(self.parallel_config.pipeline_parallel_size):
self.pp_tp_workers.append([])
for tp_rank in range(self.parallel_config.tensor_parallel_size):
# PP=2, TP=4
# pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]]
rank = (pp_rank * self.parallel_config.tensor_parallel_size) + tp_rank
assert len(self.pp_tp_workers[pp_rank]) == tp_rank
assert pp_rank < len(self.pp_tp_workers)
self.pp_tp_workers[pp_rank].append(self.workers[rank])
def reinitialize_distributed(
self, reconfig_request: ReconfigureDistributedRequest
) -> None:
self.collective_rpc("reinitialize_distributed", args=(reconfig_request,))
if (
reconfig_request.new_data_parallel_rank
== ReconfigureRankType.SHUTDOWN_CURRENT_RANK
):
self.shutdown()
def execute_model( # type: ignore[override]
self, scheduler_output: SchedulerOutput, non_block: bool = False
) -> ModelRunnerOutput | Future[ModelRunnerOutput]:
"""Execute the model on the Ray workers.
Args:
scheduler_output: The scheduler output to execute.
non_block: If True, the method will return a Future.
Returns:
The model runner output.
"""
# Build the compiled DAG for the first time.
if self.forward_dag is None: # type: ignore
self.forward_dag = self._compiled_ray_dag(enable_asyncio=False)
refs = self.forward_dag.execute(scheduler_output) # type: ignore
if not self.has_connector:
# Get output only from a single worker (output_rank)
# When PP is not used, we block here until the result is available.
if not non_block:
return refs[0].get()
# When PP is used, we return a FutureWrapper immediately so that
# the scheduler can yield to the next batch.
return FutureWrapper(refs)
# Get output from all workers when connector is present
assert self.kv_output_aggregator is not None
if not non_block:
# Block and get results from all workers
outputs = [ref.get() for ref in refs]
return self.kv_output_aggregator.aggregate(outputs)
# Return a future that will aggregate outputs from all workers
return FutureWrapper(refs, self.kv_output_aggregator)
def collective_rpc(
self,
method: str | Callable,
timeout: float | None = None,
args: tuple = (),
kwargs: dict[str, Any] | None = None,
non_block: bool = False,
) -> list[Any]:
"""Runs the given method on all workers."""
sent_method = method if isinstance(method, str) else cloudpickle.dumps(method)
del method
if kwargs is None:
kwargs = {}
ray_worker_outputs = [
worker.execute_method.remote( # type: ignore[attr-defined]
sent_method, *args, **kwargs
)
for worker in self.workers
]
# Get the results of the ray workers.
if non_block:
return [FutureWrapper((output,)) for output in ray_worker_outputs]
return ray.get(ray_worker_outputs, timeout=timeout)
def _check_ray_cgraph_installation(self):
import importlib.metadata
from packaging import version
required_version = version.parse("2.43.0")
current_version = version.parse(importlib.metadata.version("ray"))
if current_version < required_version:
raise ValueError(
f"Ray version {required_version} is "
f"required, but found {current_version}"
)
import importlib.util
cgraph_spec = importlib.util.find_spec("ray.experimental.compiled_dag_ref")
if cgraph_spec is None:
raise ValueError(
"Ray Compiled Graph is not installed. "
"Run `pip install ray[cgraph]` to install it."
)
cupy_spec = importlib.util.find_spec("cupy")
if cupy_spec is None and envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "nccl":
raise ValueError(
"cupy is not installed but required since "
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE is set to 'nccl'. "
"Run `pip install ray[cgraph]` and check cupy installation."
)
def _compiled_ray_dag(self, enable_asyncio: bool):
assert self.parallel_config.use_ray
self._check_ray_cgraph_installation()
# Enlarge the default value of "RAY_CGRAPH_get_timeout" to 300 seconds
# (it is 10 seconds by default). This is a Ray environment variable to
# control the timeout of getting result from a compiled graph execution,
# i.e., the distributed execution that includes model forward runs and
# intermediate tensor communications, in the case of vllm.
# Note: we should set this env var before importing
# ray.dag, otherwise it will not take effect.
os.environ.setdefault("RAY_CGRAPH_get_timeout", "300") # noqa: SIM112
from ray.dag import InputNode, MultiOutputNode
logger.info(
"RAY_CGRAPH_get_timeout is set to %s",
os.environ["RAY_CGRAPH_get_timeout"], # noqa: SIM112
)
logger.info(
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE = %s",
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE,
)
logger.info(
"VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM = %s",
envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM,
)
channel_type = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
if channel_type not in ("auto", "nccl", "shm"):
raise ValueError(
"Invalid value for VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: "
f"{channel_type}. Valid values are: 'auto', 'nccl', or 'shm'."
)
with InputNode() as input_data:
# Example DAG: PP=2, TP=4
#
# SchedulerOutput -> 0 -> (SchedulerOutput, IntermediateTensors) -> 4 -> ModelRunnerOutput # noqa: E501
# SchedulerOutput -> 1 -> (SchedulerOutput, IntermediateTensors) -> 5 -> ModelRunnerOutput # noqa: E501
# SchedulerOutput -> 2 -> (SchedulerOutput, IntermediateTensors) -> 6 -> ModelRunnerOutput # noqa: E501
# SchedulerOutput -> 3 -> (SchedulerOutput, IntermediateTensors) -> 7 -> ModelRunnerOutput # noqa: E501
# All workers in the first TP group will take in the
# ExecuteModelRequest as input.
outputs = [input_data for _ in self.pp_tp_workers[0]]
for pp_rank, tp_group in enumerate(self.pp_tp_workers):
# Each PP worker takes in the output of the previous PP worker,
# and the TP group executes in SPMD fashion.
outputs = [
worker.execute_model_ray.bind(outputs[i]) # type: ignore[attr-defined]
for i, worker in enumerate(tp_group)
]
last_pp_rank = len(self.pp_tp_workers) - 1
if (
pp_rank < last_pp_rank
and envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE != "shm"
):
# Specify how intermediate tensors should be passed
# between pp stages, no need to specify for the last
# pp stage or when using shared memory (the default).
transport = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
outputs = [
output.with_tensor_transport(transport=transport)
for output in outputs
]
forward_dag = MultiOutputNode(outputs)
if envs.VLLM_USE_RAY_WRAPPED_PP_COMM:
from ray.experimental.channel.accelerator_context import (
register_accelerator_context,
)
from vllm.distributed.device_communicators.ray_communicator import (
RayPPCommunicator,
)
register_accelerator_context(
torch_module_name="cuda", communicator_cls=RayPPCommunicator
)
logger.info(
"Using RayPPCommunicator "
"(which wraps vLLM _PP GroupCoordinator) "
"for Ray Compiled Graph communication."
)
else:
logger.info(
"Using Ray's NCCL communicator for Ray Compiled Graph communication."
)
return forward_dag.experimental_compile(
enable_asyncio=enable_asyncio,
_overlap_gpu_communication=envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM,
)
def __del__(self):
self.shutdown()
def check_health(self) -> None:
# Assume that the Ray workers are healthy.
# TODO: check the health of the Ray workers
return